Exercise 14

For the following exercises, determine whether there is a minimum or maximum value to each quadratic function. Find the value and the axis of symmetry.

$$
y(x)=2 x^{2}+10 x+12
$$

Solution

Begin by factoring the coefficient of x^{2}.

$$
y(x)=2\left(x^{2}+5 x+6\right)
$$

In order to write this quadratic function in vertex form, it's necessary to complete the square, which makes use of the following algebraic identity.

$$
(x+B)^{2}=x^{2}+2 x B+B^{2}
$$

Notice that $2 B=5$, which means $B=\frac{5}{2}$ and $B^{2}=\frac{25}{4}$. Add and subtract $\frac{25}{4}$ on the right side within the parentheses and use the identity so that x appears in only one place.

$$
\begin{aligned}
y(x) & =2\left[\left(x^{2}+5 x+\frac{25}{4}\right)+6-\frac{25}{4}\right] \\
& =2\left[\left(x+\frac{5}{2}\right)^{2}-\frac{1}{4}\right] \\
& =2\left(x+\frac{5}{2}\right)^{2}-\frac{1}{2}
\end{aligned}
$$

Therefore, the vertex of the parabola is $\left(-\frac{5}{2},-\frac{1}{2}\right)$. The axis of symmetry is $x=-\frac{5}{2}$, and the minimum (because the coefficient of x^{2} is positive) is $y=-\frac{1}{2}$.

